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Abstract

different sufficient conditions for the transfer function of’ two-mode
be minimum phase and illustrate these results with a few examples,

Introduction

Consider the coupled line equations

Id(z) = - I’oIo(z) + jc(z)Il(z)

(1)

I:(z) = jC(Z)Io(Z) - rlI1(z)

describing a system of two coupled modes
traveling in the +Z direction, r. and i-l
are the complex propagation constants, with
real and imaginary parts

and ‘ denotes differentiation with respect
to z. Io(z) and 11(z) are complex wave
amplitudes representing signal and spurious
modes respectively, each having time
dependence exp(j2mft). c(z) is a real
coupling coefficient having arbit~ary
functional dependence on distance z; c(z) is
taken as a random process with known
statistics in some problems.

We assume initial conditions

l.(0) = 1, 11(0) = O. (3)

Thus , a unit signal is injected in the
desired mode at z = O; the output Io(z) is
then the complex signal transfer function
for length z of guide.

The following normalization is convenient
[1]:

Io(z) E exp(-roz) “ GO(Z) (4)

(4)

ll(z) ❑ exp(-r’lz) “ Gl(z)

Ar ❑ r. - rl = Aa +jAf3

Aci = a. - al

A8=i30-B1

(5)

(6)

Then (1) becomes

G:(z) = jc(z)exp(-Arz) “ Go(z)

(7)

G;(z) = jc(z)exp(+Arz) “ Go(z)

governing the normalized transfer functions
Go and G1. The initial conditions (3)
become

GO(0) = 1 , G1(0) = O . (8)

Now let GO(Ar) be the solution to (7)
and (8) for some fixed guide length z and
coupling function c(z), Then the normalized
signal transfer function for a guide with
particular values of attenuation and phase
constants is found by substituting (6) for
the real imaginary parts of the complex
parameter Ar of (5).

The physical applications of these
equations have been discussed in several
places, in particular in Section I of [I],
which gives earlier pertinent references.
The following facts, from Sections II and III
and Appendix I of [1], are of direct interest
here:

1. The signal mode is assumed to have
lower heat loss and greater group
velocity than the spurious mode:
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ACI=ao-cil~O. (9)

&~<o. (lo)

2. Over narrow bands of interest we
neglect the frequency dependence
of Aa and c(z), and assume A6
varies approximately linearly with
frequency f (with negative slope).

Item 2 suggests the substitution

-A6+1 (11)

where A is normalized angular frequency,
since

A : constant “ 21Tf (12)

over a suitably narrow band. Introduce the
complex frequency

as with the
Sections IV

S=u+ja,

LaPlace transform,
and V and Appendix

(13)

Then from
II of [1],

GO(ACX-S) = Go(Aa-a-ji) (14)

gives the behavior of the transfer function
GO throughout the complex frequency plane,
where Go(Ar) is the solution to (7) and. (8)
for some fixed guide length.

Therefore let us relate the two complex
Ar- and s-planes by

Ar = Aa- S , (15).

where Aa is the particular value of
differential attenuation under consideration.
The right-half s-plane,

0>0, (16a)

corresponds to the region

ReAr <Aa=- IAIxI (16b)

in the Ar-plane. The imaginary axis in the
s-plane,

(s =0 , s =jk , (17a)

corresponds to the vertical line

Ar=Aci-jA=Aa+jA6 (17b)

in the Ar-plane, and Go evaluated at points
along (17-b) gives the transfer function
for sinusoidal inputs, the only values of
direct physical interest.

A number of general properties of’ Go
were given i.n Section IV of [I] for arbitrary
c(z), valid without perturbation or any
other approximations. For example, GO is
analytic for all finite Ar (and hence for
all finite s); i.e., Go has no poles or
other singularities anywhere in the finite
Ar- or s-planes. However, [1] contained no
information about zeros of Go. Such infor-
mation is contained in the following results:

If

(Z

J
o

-12
c(x)ldx < cosh : 1.317 (18)

then all zeros of Go lie in the region Of the
s-plane

IS E Re s <AIX <0 , (19)—

Go is consequently minimum phase, since all
zeros lie in the left-half s-plane,

If

ts
02-1.0455

Ic(x)le
Arx(s-x)dx < ,/ n

.

J d
L

o

for O<s<z , ACI< () , (20)—. —

then Go is minimum phase, i.e., all zeros
lie in the region of the s-plane

o 5Re s <0 . (21)
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Series Solutions and Minimum Phase—

A general series solution for GO
and (8), analytic for all finite Ar,
given in [I.] and [2]. From Appendix
of [1]

GO(A17

where the

= 1 + ; (-l)nG
n.1

~(n)(Ar)

terms are bounded by

JL--J
z 2n

Ic(x)ldx

o
‘O(n) (Ar) ~ 2n !

, Re Ar <—

of (7)
is
II

(22)

o. (23)

The precise form for Go(n (Ar), and bounds
for Re Ar ~ O, are given in [1], but are
not of Interest here, The Go(n) of (22) are
in general complex. Then

Go(Ar) + O if ~ (-l)nGo(n)(Ar) < 1“
n= 1

(24)
Using (23)

mz
2n

lc(x)ldx

m

(Ar) ~;
.-0

x ‘-l)nGO(n)
n=l n=l

(2n)!

[1
—z

= cosh
lc(x)ldx -1

0
—

Therefore Go(Al’) 1
half Ar-plane if

[1

z

cosh

o

or

I

z

Ic(x)ldx <

0

(25)

as no zeros In the left-

1c(x)jdx < 2 (26)

cosh
-12

x 1.317 . (27)

By (16), the condition of (27) and (18)
excludes zeros from the right-half s-plane,
guaranteeing that GO is minimum phase.
Moreover, zeros are excluded from a strip
extending from Re s = O toRe s = Aa <O
in the left-half s-plane as stated in (19);
consequently the condition of (18) or (27)
is stronger than required for Go to be
minimum phase.

Define the complex signal loss as [2]

A(Ar) = in Go(Ar) . (28)

A series solution for A was given in [2].
In the region

Re Ar < ACY < 0 (29)

this series converges, and hence A is
analytic, If the condition

I

z
Aa(s-x)dx < /n-l.0455

lc(x)le
lj~”

o

for (30)

()<S<Z , AQ <0 ,
— — —

given in (20), is satisfied. Since poles
of A correspond to zeros and poles of Go,
and since Go has no finite poles, absence
of poles for A implies absence of zeros for
G. From (29) and (16), the condition of
(80) or (30) excludes zeros from the right-
half s-plane, as stated in (21), and
guarantees Go to be minimum phase.

The condition of (18) permits larger
couDling c(x) than that of (20) for Aa = O;
for large enough IAuI and most reasonable
c(x) the reverse is true, If a given
c(x) satisfies both constraints (18) and
(20), (19) provides a stronger constraint
on the transfer function zeros than (21).
In a rough sense, (20)-(21) state that
the transfer function is minimum phase if
the spurious mode is dissipated faster
than it is coupled from the signal mode.
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