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Abstract

We gilve two different sufficient conditions for the transfer function of two-mode
random media to be minimum phase and illustrate these results with a few examples.

Introduction

Consider the coupled line equations

Ig(z) = = TaIz(2) + Je(z)I (2)

(L)
I1(z) = Je(z)Iy(z) - T4I,(2)

describing a system of two coupled modes
traveling in the +z direction. Ty and Ty
are the complex propagatlon constants, with
real and imaglnary parts

Tg = ag + 3By , Ty = o) +J8; , (2)

and “ denotes differentiation with respect
to z. Ip(z) and Ij(z) are complex wave
amplitudes representing signal and spurious
modes respectlvely, each having time
dependence exp(janft). c(z) is a real
coupling coefficient having arbitrary
functional dependence on distance z; c(z) 1s
taken as a random process with known
statistlics in some problems.

We assume initial conditions

IO(O) =1, I,(0) = 0. (3

Thus, a unit slgnal is injected in the
desired mode at z = 0; the output Iy(z) is
then the complex signal transfer function
for length z of gulde.

The followlng normalizatlon 1s convenilent

[11:

Iy(z) = exp(-T,z) Gy(2) €]

(W

Il(z) = exp(—le) Gl(Z)
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AT =T, - T, = Ao +3AB (5)

AB = 8, - 8, (6)

Then (1) becomes

Gé(z) = je(z)exp(-ATz) Go(z)
(7}

Je(z)exp(+ATz)

Gi(z) Go(z)

governing the normalized transfer functions
Gy and G;. The initlal conditions (3)
become

Gyp(0) =1, G (0) =0 . (8)

Now let Gg(AT) be the solution to (7)
and (8) for some fixed guide length z and
coupling function c(z). Then the normalized
signal transfer function for a guide with
particular values of attenuation and phase
constants 1s found by substituting (6) for
the real ilmaginary parts of the complex
parameter AT of (5).

The physical applications of these
equations have been discussed in several
places, in particular in Section I of [1],
which glves earlier pertinent references.

The following facts, from Sections IT and IIT
and Appendix I of [1], are of direct interest
here:

1. The signal mode 1s assumed to have
lower heat loss and greater group
velocity than the spurious mode:



(9)

d

2. Over narrow bands of interest we
neglect the frequency dependence
of Ao and c¢(z), and assume AB
varies approximately linearly with
frequency £ (with negative slope).

Item 2 suggests the substitution

- AR > X (11)

where A 1s normallzed angular frequency,
since

X = constant 2nf (12)

over a sultably narrow band.
complex frequency

Introduce the

8 20+ JA, (13)

as with the LaPlace transform. Then from
Sections IV and V and Appendix IT of [1],

Go(Au-s) = GO(Aa—G—jA) (14)

glves the behavior of the transfer function
Gp throughout the complex frequency plane,
where Go(AT) 1is the solution to (7) and (8)
for some fixed guilde length.

Therefore let us relate the two complex
AT- and s-planes by

AT = (15

Ao - 5

where Aa 1s the particular value of
differential attenuation under consideration.
The right-half s-plane,

o >0, (16a)
corresponds to the region
Re AT < Ao = - |Aa] (16b)
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in the AT-plane. The lmaglinary axls in the

s-plane,
c=0,s8=J3), (17a)
corresponds to the vertlcal line
AT = Ao = JA = Aa + JAB (170)
in the Al-plane, and Go evaluated at polnts

along (17-b) glves the transfer function
for sinusoidal inputs, the only values of
direct physlcal interest.

A number of general propertles of Gy
were given in Section IV of [1] for arbitrary
c(z), valid without perturbation or any
other approximations., For example, Gp is
analytic for all finite AT (and hence for
all finite s); 1.e., Gy has no poles or
other singularitles anywhere in the finlte
AT- or s-planes. However, [1] contained no
information about zeros of Gg. Such Infor-
mation is contained in the following results:

ir

le(x)|dx < cosh™l2 # 1.317 (18)

)
0

then all zeros of Gy lie in the region of the
s-plane

6 = Re s < Ao <0 ., (19)

Gg 1s consequently minimum phase, since all
zeros lie in the left-half s-plane.

ir

rs Vaay=m
le(x) b5 Mgy < /221 z 455
J v
0
for 0 <s <z , Aa <0, (20)
then Gy is minimum phase, 1.e., all zeros

lle in the reglon of the s-plane

G ZRes <0 (21)



Series Solutions and Minimum Phase

A general serles solution for Gg of (7)
and (8), analytic for all finite AT, is
given in [1] and [2]. From Appendix II

of [1]
-— . n
GO(AF) =1 + E (-1) Go(n)(AF) (22)
n=1
where the terms are bounded by
2n
'Go<n)(AF) < s Re AT < 0 . (23)

The precise form for Gy
for Re AT > 0, are give

(AT), and bounds

énln [1], but are

not of interest here. The G, of (22) are
A (n)
in general complex. Then
2 n
GO(AF) #Z0 if E (-1) Go(n)(AF) < 1.
n=1
(2l)
Using (23)
z lon
le(x)]ax
T (-7 (ar) g -
Z (-1)°¢G AT < 3
n=l 0(n) = =1 2n) !
- -
= cosh f le(x)|ax| - 1 (25)

0

Therefore GO(AF) has no zeros in the left-
half AT-plane if

Z

cosh {
0
b4

le(x)|dax < cosh”
0

le(x)|ax] < 2 (26)

or

1

2 % 1,317 (27)

|

By (16), the condition of (27) and (18)
excludes zeros from the right-half s-plane,
guaranteeing that Gg 1s minimum phase.
Moreover, zeros are excluded from a strip
extending from Re s 0 to Re s Ao < 0

in the left-half s-plane as stated in (19);
consequently the condition of (18) or (27)
1s stronger than required for Gp to be
minimum phase.

Define the complex signal loss as [2]

ACAT) = 1n GO(AF) (28)
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A serles solution for A was given in [2].
In the reglon

Re AT < Ao < 0 (29)
this series converges, and hence A 1s
analytic, if the condition

2 AV
]c(x)leAa(S-X)dx < / KZEZ—l % 0.455
4
0
for (30)

Ao <

0 <s <z, o,

given in (20), 1is satlsfied. Since poles
of A correspond to zeros and poles of Go»
and since Gy has no finite poles, absence
of poles for A implles absence of zeros for
Gg. From (29) and (16), the condition of
(80) or (30) excludes gzeros from the right-
half s-plane, as stated in (21), and
guarantees GO to be minimum phase.

The condition of (18) permits larger
coupling c(x) than that of (20) for Aa
for large enough |Ac] and most reasonable
¢(x) the reverse is true. If a given
c(x) satlsfies both constraints (18) and
(20), (19) provides a stronger constraint
on the transfer function zeros than (21).
In a rough sense, (20)-(21) state that
the transfer function 1s minimum phase if
the spurlous mode i1s dissipated faster
than 1t is coupled from the signal mode.
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