

MINIMUM PHASE BEHAVIOR OF RANDOM MEDIA

by

H. E. Rowe
 Bell Telephone Laboratories Incorporated
 Crawford Hill Laboratory
 Holmdel, New Jersey 07733

and

D. T. Young
 Bell Telephone Laboratories Incorporated
 Murray Hill, New Jersey 07974

Abstract

We give two different sufficient conditions for the transfer function of two-mode random media to be minimum phase and illustrate these results with a few examples.

Introduction

Consider the coupled line equations

$$\Delta\Gamma \equiv \Gamma_0 - \Gamma_1 = \Delta\alpha + j\Delta\beta \quad (5)$$

$$\begin{aligned} I_0'(z) &= -\Gamma_0 I_0(z) + jc(z) I_1(z) \\ &\quad (1) \end{aligned}$$

$$\begin{aligned} I_1'(z) &= jc(z) I_0(z) - \Gamma_1 I_1(z) \\ &\quad (6) \end{aligned}$$

describing a system of two coupled modes traveling in the $+z$ direction. Γ_0 and Γ_1 are the complex propagation constants, with real and imaginary parts

$$\Gamma_0 \equiv \alpha_0 + j\beta_0, \quad \Gamma_1 \equiv \alpha_1 + j\beta_1, \quad (2)$$

and $'$ denotes differentiation with respect to z . $I_0(z)$ and $I_1(z)$ are complex wave amplitudes representing signal and spurious modes respectively, each having time dependence $\exp(j2\pi ft)$. $c(z)$ is a real coupling coefficient having arbitrary functional dependence on distance z ; $c(z)$ is taken as a random process with known statistics in some problems.

We assume initial conditions

$$I_0(0) = 1, \quad I_1(0) = 0. \quad (3)$$

Thus, a unit signal is injected in the desired mode at $z = 0$; the output $I_0(z)$ is then the complex signal transfer function for length z of guide.

The following normalization is convenient [1]:

$$I_0(z) \equiv \exp(-\Gamma_0 z) \cdot G_0(z) \quad (4)$$

$$(4)$$

$$I_1(z) \equiv \exp(-\Gamma_1 z) \cdot G_1(z)$$

Then (1) becomes

$$\begin{aligned} G_0'(z) &= jc(z) \exp(-\Delta\Gamma z) \cdot G_0(z) \\ &\quad (7) \end{aligned}$$

$$G_1'(z) = jc(z) \exp(+\Delta\Gamma z) \cdot G_1(z)$$

governing the normalized transfer functions G_0 and G_1 . The initial conditions (3) become

$$G_0(0) = 1, \quad G_1(0) = 0. \quad (8)$$

Now let $G_0(\Delta\Gamma)$ be the solution to (7) and (8) for some fixed guide length z and coupling function $c(z)$. Then the normalized signal transfer function for a guide with particular values of attenuation and phase constants is found by substituting (6) for the real and imaginary parts of the complex parameter $\Delta\Gamma$ of (5).

The physical applications of these equations have been discussed in several places, in particular in Section I of [1], which gives earlier pertinent references. The following facts, from Sections II and III and Appendix I of [1], are of direct interest here:

1. The signal mode is assumed to have lower heat loss and greater group velocity than the spurious mode:

$$\Delta\alpha = \alpha_0 - \alpha_1 \leq 0 . \quad (9)$$

$$\frac{d}{df} \Delta\beta < 0 . \quad (10)$$

2. Over narrow bands of interest we neglect the frequency dependence of $\Delta\alpha$ and $c(z)$, and assume $\Delta\beta$ varies approximately linearly with frequency f (with negative slope).

Item 2 suggests the substitution

$$-\Delta\beta \rightarrow \lambda \quad (11)$$

where λ is normalized angular frequency, since

$$\lambda \approx \text{constant} \cdot 2\pi f \quad (12)$$

over a suitably narrow band. Introduce the complex frequency

$$s \equiv \sigma + j\lambda , \quad (13)$$

as with the LaPlace transform. Then from Sections IV and V and Appendix II of [1],

$$G_0(\Delta\alpha-s) = G_0(\Delta\alpha-\sigma-j\lambda) \quad (14)$$

gives the behavior of the transfer function G_0 throughout the complex frequency plane, where $G_0(\Delta\alpha)$ is the solution to (7) and (8) for some fixed guide length.

Therefore let us relate the two complex $\Delta\Gamma$ - and s -planes by

$$\Delta\Gamma = \Delta\alpha - s , \quad (15)$$

where $\Delta\alpha$ is the particular value of differential attenuation under consideration. The right-half s -plane,

$$\sigma > 0 , \quad (16a)$$

corresponds to the region

$$\text{Re } \Delta\Gamma < \Delta\alpha = -|\Delta\alpha| \quad (16b)$$

in the $\Delta\Gamma$ -plane. The imaginary axis in the s -plane,

$$\sigma = 0 , s = j\lambda , \quad (17a)$$

corresponds to the vertical line

$$\Delta\Gamma = \Delta\alpha - j\lambda = \Delta\alpha + j\Delta\beta \quad (17b)$$

in the $\Delta\Gamma$ -plane, and G_0 evaluated at points along (17-b) gives the transfer function for sinusoidal inputs, the only values of direct physical interest.

A number of general properties of G_0 were given in Section IV of [1] for arbitrary $c(z)$, valid without perturbation or any other approximations. For example, G_0 is analytic for all finite $\Delta\Gamma$ (and hence for all finite s); i.e., G_0 has no poles or other singularities anywhere in the finite $\Delta\Gamma$ - or s -planes. However, [1] contained no information about zeros of G_0 . Such information is contained in the following results:

If

$$\int_0^z |c(x)| dx < \cosh^{-1} 2 \approx 1.317 \quad (18)$$

then all zeros of G_0 lie in the region of the s -plane

$$\sigma \equiv \text{Re } s < \Delta\alpha \leq 0 . \quad (19)$$

G_0 is consequently minimum phase, since all zeros lie in the left-half s -plane.

If

$$\int_0^s |c(x)| e^{\Delta\alpha(s-x)} dx < \sqrt{\frac{\sqrt{2} - 1}{2}} \approx 0.455$$

$$\text{for } 0 \leq s \leq z , \Delta\alpha \leq 0 , \quad (20)$$

then G_0 is minimum phase, i.e., all zeros lie in the region of the s -plane

$$\sigma \equiv \text{Re } s < 0 . \quad (21)$$

Series Solutions and Minimum Phase

A general series solution for G_0 of (7) and (8), analytic for all finite $\Delta\Gamma$, is given in [1] and [2]. From Appendix III of [1]

$$G_0(\Delta\Gamma) = 1 + \sum_{n=1}^{\infty} (-1)^n G_{0(n)}(\Delta\Gamma) \quad (22)$$

where the terms are bounded by

$$|G_{0(n)}(\Delta\Gamma)| \leq \left[\int_0^z |c(x)| dx \right]^{2n} \frac{1}{(2n)!}, \quad \text{Re } \Delta\Gamma \leq 0. \quad (23)$$

The precise form for $G_{0(n)}(\Delta\Gamma)$, and bounds for $\text{Re } \Delta\Gamma \geq 0$, are given in [1], but are not of interest here. The $G_{0(n)}$ of (22) are in general complex. Then

$$G_0(\Delta\Gamma) \neq 0 \quad \text{if} \quad \left| \sum_{n=1}^{\infty} (-1)^n G_{0(n)}(\Delta\Gamma) \right| < 1. \quad (24)$$

Using (23)

$$\begin{aligned} \left| \sum_{n=1}^{\infty} (-1)^n G_{0(n)}(\Delta\Gamma) \right| &\leq \sum_{n=1}^{\infty} \frac{\left[\int_0^z |c(x)| dx \right]^{2n}}{(2n)!} \\ &= \cosh \left[\int_0^z |c(x)| dx \right] - 1 \end{aligned} \quad (25)$$

Therefore $G_0(\Delta\Gamma)$ has no zeros in the left-half $\Delta\Gamma$ -plane if

$$\cosh \left[\int_0^z |c(x)| dx \right] < 2 \quad (26)$$

or

$$\int_0^z |c(x)| dx < \cosh^{-1} 2 \approx 1.317. \quad (27)$$

By (16), the condition of (27) and (18) excludes zeros from the right-half s -plane, guaranteeing that G_0 is minimum phase. Moreover, zeros are excluded from a strip extending from $\text{Re } s = 0$ to $\text{Re } s = \Delta\alpha < 0$ in the left-half s -plane as stated in (19); consequently the condition of (18) or (27) is stronger than required for G_0 to be minimum phase.

Define the complex signal loss as [2]

$$\Lambda(\Delta\Gamma) = \ln G_0(\Delta\Gamma). \quad (28)$$

A series solution for Λ was given in [2]. In the region

$$\text{Re } \Delta\Gamma < \Delta\alpha < 0 \quad (29)$$

this series converges, and hence Λ is analytic, if the condition

$$\int_0^z |c(x)| e^{\Delta\alpha(s-x)} dx < \sqrt{\frac{\sqrt{2}-1}{2}} \approx 0.455 \quad (30)$$

for

$$0 \leq s \leq z, \quad \Delta\alpha \leq 0,$$

given in (20), is satisfied. Since poles of Λ correspond to zeros and poles of G_0 , and since G_0 has no finite poles, absence of poles for Λ implies absence of zeros for G_0 . From (29) and (16), the condition of (20) or (30) excludes zeros from the right-half s -plane, as stated in (21), and guarantees G_0 to be minimum phase.

The condition of (18) permits larger coupling $c(x)$ than that of (20) for $\Delta\alpha = 0$; for large enough $|\Delta\alpha|$ and most reasonable $c(x)$ the reverse is true. If a given $c(x)$ satisfies both constraints (18) and (20), (19) provides a stronger constraint on the transfer function zeros than (21). In a rough sense, (20)-(21) state that the transfer function is minimum phase if the spurious mode is dissipated faster than it is coupled from the signal mode.

Acknowledgment

The authors would like to thank W. D. Warters for suggesting the present problem.

References

- [1] H. E. Rowe and D. T. Young, "Transmission Distortion in Multimode Random Waveguides," IEEE Trans. Microwave Theory Tech., Vol. MTT-20, pp. 349-365, June, 1972.
- [2] H. E. Rowe, "Approximate Solutions for the Coupled Line Equations," Bell Syst. Tech. S., Vol. 41, pp. 1011-1029, May, 1962